Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Eur J Drug Metab Pharmacokinet ; 48(3): 221-240, 2023 May.
Article in English | MEDLINE | ID: covidwho-2298862

ABSTRACT

The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.


Subject(s)
COVID-19 , Cytochrome P-450 CYP2C9 Inducers , Humans , Cytochrome P-450 CYP2C9/genetics , Azithromycin , COVID-19 Vaccines , SARS-CoV-2/metabolism , Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations , Drug Interactions
2.
Biomed Pharmacother ; 162: 114636, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2269616

ABSTRACT

Ritonavir, originally developed as HIV protease inhibitor, is widely used as a booster in several HIV pharmacotherapy regimens and more recently in Covid-19 treatment (e.g., Paxlovid). Its boosting capacity is due to the highly potent irreversible inhibition of the cytochrome P450 (CYP) 3 A enzyme, thereby enhancing the plasma exposure to coadministered drugs metabolized by CYP3A. Typically used booster doses of ritonavir are 100-200 mg once or twice daily. This review aims to address several aspects of this booster drug, including the possibility to use lower ritonavir doses, 20 mg for instance, resulting in partial CYP3A inactivation in patients. If complete CYP3A inhibition is not needed, lower ritonavir doses could be used, thereby reducing unwanted side effects. In this context, there are contradictory reports on the actual recovery time of CYP3A activity after ritonavir discontinuation, but probably this will take at least one day. In addition to ritonavir's CYP3A inhibitory effect, it can also induce and/or inhibit other CYP enzymes and drug transporters, albeit to a lesser extent. Although ritonavir thus exhibits gene induction capacities, with respect to CYP3A activity the inhibition capacity clearly predominates. Another potent CYP3A inhibitor, the ritonavir analog cobicistat, has been reported to lack the ability to induce enzyme and transporter genes. This might result in a more favorable drug-drug interaction profile compared to ritonavir, although the actual benefit appears to be limited. Indeed, ritonavir is still the clinically most used pharmacokinetic enhancer, indicating that its side effects are well manageable, even in chronic administration regimens.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Humans , Ritonavir/pharmacology , Cytochrome P-450 CYP3A/metabolism , Pharmaceutical Preparations , COVID-19 Drug Treatment , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions
3.
Enzyme Microb Technol ; 165: 110210, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2229844

ABSTRACT

Niclosamide has been proposed as a possible candidate for a Covid-19 drug. However, the metabolites of niclosamide are difficult to investigate because they are usually not available commercially or they are quite expensive in the commercial market. In this study, the major metabolite of niclosamide in human liver microsomes (HLMs) was confirmed to be 3-OH niclosamide. Because the production of 3-OH niclosamide using HLMs has a slow turnover rate, a new method of producing niclosamide metabolite with an easier and highly cost-efficient method was thus conducted. Bacterial CYP102A1 (BM3) is one of the bacterial cytochrome P450s (CYPs) from Bacillus megaterium that structurally show similar activities to human CYPs. Here, the BM3 mutants were used to produce niclosamide metabolites and the metabolites were analyzed using high-performance liquid chromatography and LC-mass spectrometry. Among a set of mutants tested here, BM3 M14 mutant was the most active in producing 3-OH niclosamide, the major metabolite of niclosamide. Comparing BM3 M14 and HLMs, BM3 M14 production of 3-OH niclosamide was 34-fold higher than that of HLMs. Hence, the engineering of BM3 can be a cost-efficient method to produce 3-OH niclosamide.


Subject(s)
COVID-19 , Niclosamide , Humans , Niclosamide/metabolism , Bacterial Proteins/metabolism , COVID-19/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Microsomes, Liver/metabolism
4.
Genes (Basel) ; 13(12)2022 12 13.
Article in English | MEDLINE | ID: covidwho-2163300

ABSTRACT

Cytochrome P450 is an enzyme involved in the metabolism of phase 1 xenobiotics, toxins, endogenous hormones, and drugs, including those used in COVID-19 treatment. Cytochrome p450 genes are linked to the pathogenesis of some multifactorial traits and diseases, such as cancer, particularly prostate cancer, colorectal cancer, breast cancer, and cervical cancer. Genotyping was performed on 540 supposedly healthy individuals of 5 Finno-Permic populations from the territories of the European part of the Russian Federation. There was a statistically significant difference between Veps and most of the studied populations in the rs4986774 locus of the CYP2D6 gene; data on the rs3892097 locus of the CYP2D6 gene shows that Izhemsky Komis are different from the Mordovian and Udmurt populations.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Polymorphism, Genetic , Russia/ethnology
5.
Chem Res Toxicol ; 35(9): 1467-1481, 2022 09 19.
Article in English | MEDLINE | ID: covidwho-2008236

ABSTRACT

Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 µM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 µM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.


Subject(s)
COVID-19 , Activation, Metabolic , Benzamides , Catalysis , Cytochrome P-450 Enzyme System/metabolism , Humans , Microsomes, Liver/metabolism , NADP/metabolism , Piperidines , Potassium Cyanide , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines , Thiazoles
6.
Int J Mol Sci ; 23(14)2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1964009

ABSTRACT

The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1 (CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional (3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of a truncated protein for docking studies of ligands led to incorrect results. As the structure of the native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength of the analog to the known 3D structure of the CYP3A4 enzyme.


Subject(s)
Steroid Hydroxylases , Vitamin D , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/metabolism , Humans , Steroid Hydroxylases/metabolism , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase/metabolism
7.
Biomed Pharmacother ; 151: 113124, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1850707

ABSTRACT

The substrate-analog furin inhibitor MI-1851 can suppress the cleavage of SARS-CoV-2 spike protein and consequently produces significant antiviral effect on infected human airway epithelial cells. In this study, the interaction of inhibitor MI-1851 was examined with human serum albumin using fluorescence spectroscopy and ultrafiltration techniques. Furthermore, the impacts of MI-1851 on human microsomal hepatic cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 activities were assessed based on fluorometric assays. The inhibitory action was also examined on human recombinant CYP3A4 enzyme and on hepatocytes. In addition, microsomal stability (60 min) and cytotoxicity were tested as well. MI-1851 showed no relevant interaction with human serum albumin and was significantly depleted by human microsomes. Furthermore, it did not inhibit CYP1A2, 2C9, 2C19 and 2D6 enzymes. In human hepatocytes, CYP3A4 was significantly suppressed by MI-1851 and weak inhibition was noticed in regard to human microsomes and human recombinant CYP3A4. Finally, MI-1851 did not impair the viability and the oxidative status of primary human hepatocytes (up to 100 µM concentration). Based on these observations, furin inhibitor MI-1851 appears to be potential drug candidates in the treatment of COVID-19, due to the involvement of furin in S protein priming and thus activation of the pandemic SARS-CoV-2.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Furin , Albumins/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/toxicity , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Furin/antagonists & inhibitors , Furin/metabolism , Furin/pharmacology , Humans , Microsomes, Liver , SARS-CoV-2/drug effects , Serum Albumin, Human/metabolism , Spike Glycoprotein, Coronavirus , COVID-19 Drug Treatment
8.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667252

ABSTRACT

Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (<15%), accuracy and recovery (80-120%), limit of detection (5.60 µM and 0.06 µM), limit of quantification (16.98 µM and 0.19 µM), and stability of the newly developed method were validated for dexamethasone and 6ß-hydroxydexamethasone, respectively, following International Conference on Harmonization (ICH) guidelines. This method was applied in vitro to measure CYP3A2 activity. The results showed that aspirin competitively inhibits 6ß-hydroxylation (CYP3A2 activity) with an inhibition constant (Ki) = 95.46 µM and the concentration of the inhibitor causing 50% inhibition of original enzyme activity (IC50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.


Subject(s)
Aspirin/pharmacology , Chromatography, High Pressure Liquid/methods , Cytochrome P-450 CYP3A/metabolism , Animals , Aspirin/chemistry , Cytochrome P-450 CYP3A/drug effects , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dexamethasone/analogs & derivatives , Dexamethasone/pharmacology , Male , Microsomes, Liver/metabolism , Pharmaceutical Preparations/metabolism , Protein Isoforms/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
9.
Org Lett ; 24(3): 804-808, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1632912

ABSTRACT

A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.


Subject(s)
Aspergillus/metabolism , Pyridones/metabolism , Aspergillus oryzae/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Deletion , Humans , Multigene Family/genetics , Polyketides/metabolism , Polyketides/pharmacology , Pyridones/pharmacology , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
10.
Biomed Pharmacother ; 146: 112513, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1575252

ABSTRACT

The interactions of four sulfonylated Phe(3-Am)-derived inhibitors (MI-432, MI-463, MI-482 and MI-1900) of type II transmembrane serine proteases (TTSP) such as transmembrane protease serine 2 (TMPRSS2) were examined with serum albumin and cytochrome P450 (CYP) isoenzymes. Complex formation with albumin was investigated using fluorescence spectroscopy. Furthermore, microsomal hepatic CYP1A2, 2C9, 2C19 and 3A4 activities in presence of these inhibitors were determined using fluorometric assays. The inhibitory effects of these compounds on human recombinant CYP3A4 enzyme were also examined. In addition, microsomal stability assays (60-min long) were performed using an UPLC-MS/MS method to determine depletion percentage values of each compound. The inhibitors showed no or only weak interactions with albumin, and did not inhibit CYP1A2, 2C9 and 2C19. However, the compounds tested proved to be potent inhibitors of CYP3A4 in both assays performed. Within one hour, 20%, 12%, 14% and 25% of inhibitors MI-432, MI-463, MI-482 and MI-1900, respectively, were degraded. As essential host cell factor for the replication of the pandemic SARS-CoV-2, the TTSP TMPRSS2 emerged as an important target in drug design. Our study provides further preclinical data on the characterization of this type of inhibitors for numerous trypsin-like serine proteases.


Subject(s)
Antiviral Agents/metabolism , Cytochrome P-450 Enzyme System/metabolism , Protease Inhibitors/metabolism , Serine Endopeptidases/metabolism , Serum Albumin, Human/metabolism , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Dose-Response Relationship, Drug , Humans , Isoenzymes/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protease Inhibitors/analysis , Protease Inhibitors/pharmacology , Protein Binding/physiology , Serine Endopeptidases/analysis , Spectrometry, Fluorescence/methods , Tandem Mass Spectrometry/methods
11.
Pharmacol Ther ; 234: 108049, 2022 06.
Article in English | MEDLINE | ID: covidwho-1536989

ABSTRACT

Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.


Subject(s)
COVID-19 , Epoxy Compounds , Arachidonic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids , Epoxy Compounds/metabolism , Epoxy Compounds/pharmacology , Fatty Acids , Fatty Acids, Unsaturated/metabolism , Humans , Neovascularization, Pathologic
12.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Article in English | MEDLINE | ID: covidwho-1482163

ABSTRACT

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Subject(s)
Antiparasitic Agents/pharmacokinetics , Ivermectin/pharmacokinetics , Administration, Oral , Antiparasitic Agents/blood , Antiparasitic Agents/pharmacology , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Demethylation , Hepatocytes/metabolism , Humans , Hydroxylation , Ivermectin/blood , Ivermectin/pharmacology , Metabolic Networks and Pathways , Microsomes, Liver/metabolism
13.
BMC Pharmacol Toxicol ; 22(1): 61, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1477468

ABSTRACT

BACKGROUND: The emergence and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in thelate 2019 has caused a devastating global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19). Although vaccines have been and are being developed, they are not accessible to everyone and not everyone can receive these vaccines. Also, it typically takes more than 10 years until a new therapeutic agent is approved for usage. Therefore, repurposing of known drugs can lend itself well as a key approach for significantly expediting the development of new therapies for COVID-19. METHODS: We have incorporated machine learning-based computational tools and in silico models into the drug discovery process to predict Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of 90 potential drugs for COVID-19 treatment identified from two independent studies mainly with the purpose of mitigating late-phase failures because of inferior pharmacokinetics and toxicity. RESULTS: Here, we summarize the cardiotoxicity and general toxicity profiles of 90 potential drugs for COVID-19 treatment and outline the risks of repurposing and propose a stratification of patients accordingly. We shortlist a total of five compounds based on their non-toxic properties. CONCLUSION: In summary, this manuscript aims to provide a potentially useful source of essential knowledge on toxicity assessment of 90 compounds for healthcare practitioners and researchers to find off-label alternatives for the treatment for COVID-19. The majority of the molecules discussed in this manuscript have already moved into clinical trials and thus their known pharmacological and human safety profiles are expected to facilitate a fast track preclinical and clinical assessment for treating COVID-19.


Subject(s)
Antiviral Agents/toxicity , COVID-19 Drug Treatment , Drug Discovery , Drug Repositioning , Animals , Antiviral Agents/adverse effects , Captopril/therapeutic use , Cardiotoxins/toxicity , Catechols/therapeutic use , Computational Biology , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery/methods , Humans , Indomethacin/therapeutic use , Linezolid/therapeutic use , Liver/drug effects , Mice , Models, Biological , Nitriles/therapeutic use , Rats , Reproduction/drug effects , Software , Valproic Acid/therapeutic use
14.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1389396

ABSTRACT

Chloroxylenol (PCMX) is applied as a preservative and disinfectant in personal care products, currently recommended for use to inactivate the SARS-CoV-2 virus. Its intensive application leads to the release of PCMX into the environment, which can have a harmful impact on aquatic and soil biotas. The aim of this study was to assess the mechanism of chloroxylenol biodegradation by the fungal strains Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373, and investigate the ecotoxicity of emerging by-products. The residues of PCMX and formed metabolites were analysed using GC-MS. The elimination of PCMX in the cultures of tested microorganisms was above 70%. Five fungal by-products were detected for the first time. Identified intermediates were performed by dechlorination, hydroxylation, and oxidation reactions catalysed by cytochrome P450 enzymes and laccase. A real-time quantitative PCR analysis confirmed an increase in CYP450 genes expression in C. elegans cells. In the case of T. versicolor, spectrophotometric measurement of the oxidation of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) showed a significant rise in laccase activity during PCMX elimination. Furthermore, with the use of bioindicators from different ecosystems (Daphtoxkit F and Phytotoxkit), it was revealed that the biodegradation process of PCMX had a detoxifying nature.


Subject(s)
Cunninghamella/metabolism , Trametes/metabolism , Xylenes/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Daphnia/drug effects , Daphnia/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Laccase/metabolism , Oxidation-Reduction , Toxicity Tests , Xylenes/analysis , Xylenes/pharmacology
16.
Clin Pharmacol Ther ; 110(5): 1358-1367, 2021 11.
Article in English | MEDLINE | ID: covidwho-1384149

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is a severe acute respiratory syndrome with an underlying inflammatory state. We have previously demonstrated that acute inflammation modulates cytochromes P450 (CYPs) activity in an isoform-specific manner. We therefore hypothesized that COVID-19 might also impact CYP activity, and thus aimed to evaluate the impact of acute inflammation in the context of SARS-CoV-2 infection on the six main human CYPs activity. This prospective observational study was conducted in 28 patients hospitalized at the Geneva University Hospitals (Switzerland) with a diagnosis of moderate to severe COVID-19. They received the Geneva phenotyping cocktail orally during the first 72 hours of hospitalization and after 3 months. Capillary blood samples were collected 2 hours after cocktail administration to assess the metabolic ratios (MRs) of CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were also measured in blood. CYP1A2, CYP2C19, and CYP3A MRs decreased by 52.6% (P = 0.0001), 74.7% (P = 0.0006), and 22.8% (P = 0.045), respectively, in patients with COVID-19. CYP2B6 and CYP2C9 MRs increased by 101.1% (P = 0.009) and 55.8% (P = 0.0006), respectively. CYP2D6 MR variation did not reach statistical significance (P = 0.072). As expected, COVID-19 was a good acute inflammation model as mean serum levels of CRP, IL-6, and TNF-α were significantly (P < 0.001) higher during SARS-CoV-2 infection. CYP activity are modulated in an isoform-specific manner by SARS-CoV-2 infection. The pharmacokinetics of CYP substrates, whether used to treat the disease or as the usual treatment of patients, could be therefore clinically impacted.


Subject(s)
COVID-19/enzymology , Cytochrome P-450 Enzyme System/metabolism , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19/blood , Cytochrome P-450 Enzyme System/genetics , Female , Genetic Variation , Humans , Interleukin-6/blood , Linear Models , Male , Middle Aged , Models, Theoretical , Prospective Studies , Tumor Necrosis Factor-alpha/blood
17.
Clin Transl Sci ; 14(5): 1799-1809, 2021 09.
Article in English | MEDLINE | ID: covidwho-1160763

ABSTRACT

Drug safety is generally established from clinical trials, by pharmacovigilance programs and during observational phase IV safety studies according to drug intended or approved indications. The objective of this study was to estimate the risk of potential adverse drug events (ADEs) associated with drugs repurposed for coronavirus disease 2019 (COVID-19) treatment in a large-scale population. Drug claims were used to calculate a baseline medication risk score (MRS) indicative of ADE risk level. Fictitious claims of repurposed drugs were added, one at a time, to patients' drug regimens to calculate a new MRS and compute a level of risk. Drug claims data from enrollees with Regence health insurance were used and sub-payer analyses were performed with Medicare and commercial insured groups. Simulated interventions were conducted with hydroxychloroquine and chloroquine, alone or combined with azithromycin, and lopinavir/ritonavir, along with terfenadine and fexofenadine as positive and negative controls for drug-induced Long QT Syndrome (LQTS). There were 527,471 subjects (56.6% women; mean [SD] age, 47 years [21]) were studied. The simulated addition of each repurposed drug caused an increased risk of ADEs (median MRS increased by two-to-seven points, p < 0.001). The increase in ADE risk was mainly driven by an increase in CYP450 drug interaction risk score and by drug-induced LQTS risk score. The Medicare group presented a greater risk overall compared to the commercial group. All repurposed drugs were associated with an increased risk of ADEs. Our simulation strategy could be used as a blueprint to preemptively assess safety associated with future repurposed or new drugs.


Subject(s)
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Drug Repositioning , Long QT Syndrome/epidemiology , Administrative Claims, Healthcare/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , COVID-19/complications , COVID-19/virology , Child , Child, Preschool , Computer Simulation , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Female , Humans , Infant , Infant, Newborn , Long QT Syndrome/chemically induced , Male , Medicare/statistics & numerical data , Middle Aged , Pharmacovigilance , Retrospective Studies , Risk Assessment/methods , Risk Assessment/statistics & numerical data , United States/epidemiology , Young Adult
18.
Bioorg Med Chem Lett ; 39: 127885, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1116317

ABSTRACT

Despite the rising threat of fatal coronaviruses, there are no general proven effective antivirals to treat them. 2-Aminoquinazolin-4(3H)-one derivatives were newly designed, synthesized, and investigated to show the inhibitory effects on SARS-CoV-2 and MERS-CoV. Among the synthesized derivatives, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (9g) and 2-((3,5-dichlorophenyl)amino)-5-hydroxyquinazolin-4 (3H)-one (11e) showed the most potent anti-SARS-CoV-2 activities (IC50 < 0.25 µM) and anti-MERS-CoV activities (IC50 < 1.1 µM) with no cytotoxicity (CC50 > 25 µM). In addition, both compounds showed acceptable results in metabolic stabilities, hERG binding affinities, CYP inhibitions, and preliminary PK studies.


Subject(s)
Antiviral Agents/chemical synthesis , Drug Design , Middle East Respiratory Syndrome Coronavirus/drug effects , Quinazolinones/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Quinazolinones/chemistry , Quinazolinones/metabolism , Quinazolinones/therapeutic use , Rats , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , COVID-19 Drug Treatment
19.
Eur J Drug Metab Pharmacokinet ; 46(2): 185-203, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064631

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has been a global health crisis since it was first identified in December 2019. In addition to fever, cough, headache, and shortness of breath, an intense increase in immune response-based inflammation has been the hallmark of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) virus infection. This narrative review summarizes and critiques pathophysiology of COVID-19 and its plausible effects on drug metabolism and disposition. The release of inflammatory cytokines (e.g., interleukins, tumor necrosis factor α), also known as 'cytokine storm', leads to altered molecular pathophysiology and eventually organ damage in the lung, heart, and liver. The laboratory values for various liver function tests (e.g., alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin) have indicated potential hepatocellular injury in COVID-19 patients. Since the liver is the powerhouse of protein synthesis and the primary site of cytochrome P450 (CYP)-mediated drug metabolism, even a minor change in the liver function status has the potential to affect the hepatic clearance of xenobiotics. It has now been well established that extreme increases in cytokine levels are common in COVID-19 patients, and previous studies with patients infected with non-SARS-CoV-2 virus have shown that CYP enzymes can be suppressed by an infection-related cytokine increase and inflammation. Alongside the investigational COVID-19 drugs, the patients may also be on therapeutics for comorbidities; especially epidemiological studies have indicated that individuals with hypertension, hyperglycemia, and obesity are more vulnerable to COVID-19 than the average population. This complicates the drug-disease interaction profile of the patients as both the investigational drugs (e.g., remdesivir, dexamethasone) and the agents for comorbidities can be affected by compromised CYP-mediated hepatic metabolism. Overall, it is imperative that healthcare professionals pay attention to the COVID-19 and CYP-driven drug metabolism interactions with the goal to adjust the dose or discontinue the affected drugs as appropriate.


Subject(s)
COVID-19/physiopathology , Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations/metabolism , Animals , Cytokines/metabolism , Humans , Inflammation/pathology , Inflammation/virology , Liver/pathology , Liver/virology , Liver Function Tests , Pharmaceutical Preparations/administration & dosage , Risk Factors
20.
Curr Drug Metab ; 21(14): 1127-1135, 2020.
Article in English | MEDLINE | ID: covidwho-968953

ABSTRACT

BACKGROUND: In clinical practice, chloroquine and hydroxychloroquine are often co-administered with other drugs in the treatment of malaria, chronic inflammatory diseases, and COVID-19. Therefore, their metabolic properties and the effects on the activity of cytochrome P450 (P450, CYP) enzymes and drug transporters should be considered when developing the most efficient treatments for patients. METHODS: Scientific literature on the interactions of chloroquine and hydroxychloroquine with human P450 enzymes and drug transporters, was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/) and the ADME database (https://life-science.kyushu.fujitsu.com/admedb/). RESULTS: Chloroquine and hydroxychloroquine are metabolized by P450 1A2, 2C8, 2C19, 2D6, and 3A4/5 in vitro and by P450s 2C8 and 3A4/5 in vivo by N-deethylation. Chloroquine effectively inhibited P450 2D6 in vitro; however, in vivo inhibition was not apparent except in individuals with limited P450 2D6 activity. Chloroquine is both an inhibitor and inducer of the transporter MRP1 and is also a substrate of the Mate and MRP1 transport systems. Hydroxychloroquine also inhibited P450 2D6 and the transporter OATP1A2. CONCLUSIONS: Chloroquine caused a statistically significant decrease in P450 2D6 activity in vitro and in vivo, also inhibiting its own metabolism by the enzyme. The inhibition indicates a potential for clinical drug-drug interactions when taken with other drugs that are predominant substrates of the P450 2D6. When chloroquine and hydroxychloroquine are used clinically with other drugs, substrates of P450 2D6 enzyme, attention should be given to substrate-specific metabolism by P450 2D6 alleles present in individuals taking the drugs.


Subject(s)
Chloroquine/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxychloroquine/metabolism , Membrane Transport Proteins/metabolism , Animals , COVID-19/metabolism , Chloroquine/therapeutic use , Cytochrome P-450 Enzyme Inhibitors/therapeutic use , Drug Interactions/physiology , Humans , Hydroxychloroquine/therapeutic use , Pharmaceutical Preparations/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL